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VIBRATION OF MULTI-SPAN TIMOSHENKO
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A method of modal analysis is proposed in this paper to investigate the forced vibration
of multi-span Timoshenko beams. The ratio of the radius of gyration of the cross-section
to one span length is defined as a parameter r. The effect of r on the first modal frequency
of a beam is studied. A concentrated force traversing on the beam is used as an example.
The effects of span number, rotatory inertia and shear deformation on the maximum
moment, the maximum deflection and the critical velocity of a beam are examined. The
results are compared with those of a multi-span Bernoulli–Euler beam.

7 1997 Academic Press Limited

1. INTRODUCTION

Numerous studies concerning the dynamics of one-span beams to moving loads have been
reported in the literature [1, 2]. The responses of these beams are functions of both time
and velocity. Every beam deforms seriously at its critical velocity [3]. In most cases, both
the maximum deflection and the maximum moment of a beam induced by a moving load
are greater than those induced by the same static load. These response phenomena and
the critical velocity make the problem of moving loads an interesting topic in structural
dynamics.

Usually, the beam structures on which loads move are regularly supported. This kind
of beam is called a multi-span beam. A typical example of a multi-span beam is a
continuous guideway. The critical velocity of a continuous guideway is the lowest phase
velocity of the bending wave in the structure [4]. The dynamic responses of multi-span
Bernoulli–Euler beams to moving loads were studied by Wang [5]. His results show that
higher span numbers result in an increase of both the dynamic magnification displacement
factor and the critical velocity. Therefore, the critical velocity is a crucial characteristic of
beams.

A Bernoulli–Euler beam is the model generally employed in studying the problem of a
beam subjected to moving loads. The wave velocity solution in the beam becomes
unreasonable within the high frequency range [6]. This phenomenon means that the theory
leads to erroneous results when a beam is subjected to a fast travelling load. Therefore,
the effects of rotary inertia and shear deformation of the beam need to be considered. The
resulting modified theory is called the Timoshenko beam theory [7]. The problem of a load
travelling on a simply supported beam has been studied by Mackertich [8]. His results show
that the deflection at the middle of the Timoshenko beam is greater than that of the
Bernoulli–Euler beam.

In the aforementioned works, the effects of shear deformation and rotatory inertia on
both the dynamic response and the critical velocity of a multi-span Timoshenko beam were
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rarely discussed. The deflection and its corresponding critical velocity will therefore be
investigated in this paper. A uniform Timoshenko beam on regular supports is used as
the model for study. Each span is isotropic and homogeneous. A concentrated force
travelling at a constant velocity on the beam is presented as an example problem.

The finite element theory can be adopted as a technique for solving the problem of
moving loads. However, the extensive computational time and memory storage
requirements make the finite element technique impractical. Hence, we turn to the method
of modal analysis as the most convenient alternative tool for studying beam vibration. We
will investigate the suitability of modal analysis methodology for analyzing the vibration
of a multi-span beam. Both the analytical method and the transfer-matrix method are
employed to determine the modal frequencies and their corresponding mode shape
functions of the multi-span beam. The orthogonality of the mode shape functions will be
shown in order to guarantee the suitability of the method of modal analysis. The governing
equation of each modal amplitude will be derived. The responses of the multi-span beam
to a concentrated moving load is then presented as an example accompanied with a
discussion of the differences in maximum moment, maximum deflection and critical
velocity between the Timoshenko beam and the Bernoulli–Euler beam.

2. EQUATIONS OF MOTION

A multi-span Timoshenko beam subjected to a distributed load F�(x̄, t�) is depicted in
Figure 1. Each span of the beam is considered to be uniform and homogeneous. The
non-dimensional forms of equations of motion of a typical span are

−
o

r2

1q
1x

+
11w
1t2 =F(x, t), −

oq
r2 −

1m
1x

+ r2 12c

1t2 =0, (1a, b)

where

w= w̄/h, x= x̄/L, t=(EI/rAL4)1/2 t�, c=c�L/h, m (=1c/1x)= m̄L2/EIh,

o= kG/E, r= h/L, q (=1w/1x−c)= q̄L/kGAh, F(x, t)=F�(x̄, t�)L4/EIh,

in which E is Young’s modulus, G is the shear modulus, k is the shear coefficient, I is the
second moment of the cross-section with respect to the neutral axis, L is the span length,
h is the beam thickness, h is the radius of gyration of the cross-section, m̄ is the bending
moment, q̄ is the shear force, w̄ is the transverse deflection, c� is the rotatory angle, t� is
time, A is the cross-sectional area, r is the density and x̄ is the co-ordinate of the neutral
axis.

Figure 1. A multi-span Timoshenko beam subjected to a load F�(x̄, t�).
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3. FREE VIBRATION

For a steady state of free vibration, the transverse deflection, rotatory angle, shear force
and moment of the jth span are denoted, respectively, as w( j)(j, t), c( j)(j, t), q( j)(j, t) and
m( j)(j, t), which can be expressed as

{w( j) c( j) q( j) m( j)}T(j, t)= {W( j) C( j) Q( j) M( j)}T(j) e jvt, (2)

where j (=x− j+1) is the axial co-ordinate of the span and v is the circular frequency.
Combining equations (1a) and (1b) yields the equations of W( j)(j):

d4W( j)

dj4 + r2v201+
1
o1 d2W( j)

dj2 +0r4v4

o
−v21W( j) = 0. (3)

The zero transverse deflection at both ends of the span implies that the transverse deflection
W( j)(j), rotatory angle C( j)(j) and moment M( j)(j) are

W( j)(j)=C( j)
1 D1 (j)+C( j)

2 D2 (j), (4a)

C( j)(j)=C( j)
1 E1 (j)+C( j)

2 E2 (j), (4b)

M( j)(j)=C( j)
1 F1 (j)+C( j)

2 F2 (j), (4c)

where C( j)
1 and C( j)

2 are two constants and the functions D1 (j), . . . and F2 (j) are as listed
in the Appendix.

Equations (4b) and (4c) are rearranged into the vector form as

{C( j) M( j)}T(j)= [R( j)(j)]{C( j)
1 C( j)

2 }T (5)

from which C( j)
1 and C( j)

2 are solved in terms of the rotatory angle and moment at the left
end of the span as

{C( j)
1 C( j)

2 }T = [R( j)(0)]−1{C( j) M( j)}T(0). (6)

The rotatory angle and moment become

{C( j) M( j)}T(j)= [N( j)(j)]{C( j) M( j)}T(0), (7)

where [N( j)(j)]= [R( j)(j)] [R( j)(0)]−1. Therefore, the relation of rotatory angle and moment
at both ends of the span is

{C( j) M( j)}T(1)= [N( j)(1)]{C( j) M( j)}T(0). (8a)

The continuity of the rotatory angle and the balance of moment at the junction between
two adjacent spans implies that equation (8a) will be of the form

{C( j+1) M( j+1)}T(0)= [N( j)(1)]{C( j) M( j)}T(0), (8b)

in which [N( j)(1)] is the transfer matrix.
The modal frequencies and their corresponding mode shape functions for the multi-span

Timoshenko beam can be obtained by performing calculations similar to those described
by Wang [9]. The ith modal frequency and the corresponding set of mode shape functions
of the entire beam are denoted as vi and {Wi Ci}T(x), respectively.

4. ORTHOGONALITY

The ith modal frequency vi and the corresponding set of mode shape function Wi and
Ci satisfy the relations
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v2
i Wi =−

o

r2

dQi

dx
, r2v2

i Ci =−
oQi

r2 −
dMi

dx
, (9a, b)

where Qi and Mi are the corresponding shearing force and moment respectively.
Multiplying equation (9a) by Wj and equation (9b) by Cj and integrating their sum from
x=0 to x= n yields

v2
i g

n

0

(r2Ci Cj +Wi Wj ) dx=
o

r2 g
n

0

Qi Qj dx+g
n

0

Mi Mj dx. (10)

Similarly, the following relation is obtained:

v2
j g

n

0

(r2Ci Cj +Wi Wj ) dx=
e

r2 g
n

0

Qi Qj dx+g
n

0

Mi Mj dx. (11)

Subtracting equation (11) from equation (10) yields

(v2
i −v2

j ) g
n

0

(r2Ci Cj +Wi Wj ) dx=0, i$ j, (12)

which shows that any two distinct sets of the mode shape functions are orthogonal.

5. FORCED VIBRATION

According to the orthogonality of two distinct sets of the mode shape functions, the
superposition method is adopted in the section to study the forced vibration of the
multi-span beam. The respective transverse deflection, rotatory angle and the external load
are expressed as

(w, c) (x, t)= s
l=1

Al (t) (Wl (x), Cl (x)). (13)

Substituting equation (13) into equations (1a) and (1b) yields

s
l=1 0Wl

d2Al

dt2 −
oAl

r2

dQl

dx1=F(x, t), (14a)

s
l=1 6r2Cl

d2Al

dt2 −0oQl

r2 +
dMl

dx 1Al 7=0. (14b)

Multiplying equation (14a) by Wi (x) and equation (14b) by Ci (x) and performing their
summation yields the governing equation of the ith modal amplitude as

A� i +v2
i Ai = fi (t), (15)

in which the dot represents differentiation with respect to time and the ith modal excitation
fi (t) is

fi (t)=g
n

0

F(x, t)Wi (x) dx>g
n

0

(W2
i + r2C2

i ) dx. (16)
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Figure 2. A moving load F�0 on a multi-span beam.

6. MOVING FORCE

A concentrated force of magnitude F�0 moving on the multi-span beam at a constant
velocity V� is depicted in Figure 2. Introducing the relevant variables,

V=V�(rAL4/EI)1/2/L, T=1/V, F0 =F�0 L3/EIh,

the non-dimensional form of the force is

F(x, t)=F0 d(x−Vt), 0E tE nT, (17)

in which d is the impulse function and T is the duration of time when the force travels
on one span. The histories of the ith modal excitation fi (t), modal amplitude Ai (t) and
its corresponding velocity A� i (t), respectively, are:

(1) 0E tE nT,

fi (t)=F0 Wi (Vt)>g
n

0

(W2
i + r2C2

i ) dx, (18a)

Ai (t)=Ai (0) cos (vi t)+
sin (vi t)

vi
A� i (0)+

1
vi g

t

0

fi (t− t) sin (vi t) dt, (18b)

A� i (t)−vi Ai (0) sin (vi t)+A� i (0) cos (vi t)+g
t

0

fi (t− t) cos (vi t) dt; (18c)

(2) nTQ t,

fi (t)=0, (19a)

Ai (t)=Ai (nT) cos (vi t*)+
sin (vi t*)

vi
A� i (nT), (19b)

A� i (t)=−vi Ai (nT) sin (vi t*)+A� i (nT) cos (vi t*), (19c)

in which t*= t− nT.

7. EXAMPLES AND DISCUSSION

Each span of a multi-span beam with the same value of r is considered in the section.
The data m=0·3, k=0·85 and F0 =1 are taken for the purpose of numerical analysis.
The value of the first modal frequency of the multi-span beam is independent of the span
number. The effect of r on the frequency of the beam has been plotted in Figure 3 to show
the proportionality of r to frequency. The frequency value of the Bernoulli–Euler beam
is always greater than that of the Timoshenko beam, and this frequency deviation between
the two beams will grow as the value of r increases. The result indicates that the
Bernoulli–Euler beam is stiffer than the Timoshenko beam.
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Figure 3. The r effect on the first modal frequency of a multi-span beam. ——, Bernoulli–Euler beam; ----,
Timoshenko beam.

The initial conditions of the beam are set at zero. Results obtained by the modal analysis
method converge rather fast. Therefore, it is sufficient to employ the lowest ten modal
frequencies and their corresponding sets of mode shape functions of the entire beam in
the method of modal analysis in the numerical computation. The following parameter
definitions illustrate the numerical results: maximum deflection during the motion of the
load, Wmax ; maximum moment during the motion of the load, Mmax ; position of maximum
deflection during the motion of the load, XW ; position of maximum moment during the
motion of the load, XM ; and velocity ratio, a (=V�(r/E)1/2). The velocity range considered
in this section is 0Q aE 0·25.

The Wmax–a distribution of a three-span beam (r=0·05) is shown in Figure 4(a). The
critical velocity ratio ac of displacement is governed by the first modal frequency of the
beam. The value of the first modal frequency of the Timoshenko beam is less than that
of the Euler beam. Therefore, the critical velocity of the Timoshenko beam is less than
that of the Bernoulli–Euler beam as shown in Figure 4(a). Within the subcritical velocity
range 0E aE ac , the effects of shear deformation and bending moment always force Wmax

of the Timoshenko beam to be greater than that of the Bernoulli–Euler beam due to
bending moment only. The effects of rotatory inertia and shear deformation cause the
modal frequencies of the Timoshenko beam to be less than those of the Bernoulli–Euler

Figure 4. The Wmax–a distribution (a) and its corresponding Xw–a distribution (b) of a three-span Timoshenko
beam (r=0·05). ——, Timoshenko beam; ----, Bernoulli–Euler beam.
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Figure 5. The Mmax–a distribution (a) and its corresponding XM–a distribution (b) of a three-span Timoshenko
beam (r=0·05). ——, Timoshenko beam; ----, Bernoulli–Euler beam.

beam. Furthermore, the deviation of a modal frequency between these two beams increases
as the mode number increases. This result indicates that the Bernoulli–Euler beam is stiffer
than the Timoshenko beam. A rapidly moving force will excite the response of the higher
modes. As a result, the Wmax of the Timoshenko beam is greater than that of the
Bernoulli–Euler beam within the supercritical velocity range. The moments at the simply
supports of the beam are zero. As a result, the XW–a distribution of the Timoshenko beam
displayed in Figure 4(b) indicates that the maximum deflection always occurs in close
proximity to the mid-point of one span.

The Mmax–a distribution of the three-span beam (r=0·05) is shown in Figure 5(a). The
bending effect is the governing factor on the moment distribution of a beam to a static
force. The moving force can be regarded as a quasi-static force at the low velocity ratio.
This figure therefore reveals that the Mmax of the Timoshenko beam is almost the same
as that of the Bernoulli–Euler beam within the velocity range 0 E aE 0·05. However, the
Mmax difference between the two beams becomes apparent within the velocity range
0·1E aE ac . The absolute Mmax of the Timoshenko beam is greater than that of the
Bernoulli–Euler beam. The effects of rotatory inertia and shear deformation cause the Mmax

of the Timoshenko beam to be greater than that of the Bernoulli–Euler beam within the
supercritical velocity range 0·2E aE 0·25. The XM–a distribution of the Timoshenko
beam displayed in Figure 5(b) indicates that the maximum moment almost occurs near
the mid-point of one span.

The comparisons of the three different a effects on the history of the deflection at the
three-quarters length of the third span of a three-span Timoshenko beam (r=0·05) are
displayed in Figures 6(a)–6(c). A faster speed of the moving force results in a shorter
duration of forced vibration of the beam. As a result, Figure 6(a) reveals that a large
deflection appears when the force travels on the beam at the velocity ratio a=0·047.
Moreover, in Figure 6(b) it is shown that maximum deflection occurs as the force is leaving
the beam at the critical velocity ratio. A large deflection induced by a supercritical moving
force (a=0·173) will appear after the load has left the beam, as indicated in Figure 6(c).
The three corresponding moment histories are displayed in Figures 7(a)–7(c). The times
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Figure 6. Comparisons of three different a effects on the deflection history of the mid-point of the last span
of a three-span Timoshenko beam (r=0·05): (a) a=0·047; (b) a= ac ; (c) a=0·173.

at which the maximum moment in these three figures occur are very similar to those in
Figures 6(a)–6(c).

The effects of the span number on the Wmax–a distribution and the Mmax–a distribution
of the multi-span Timoshenko beam (r=0·05) are displayed in Figures 8(a) and 8(b)
respectively. Both the total length and the weight of the Timoshenko beam increase as the
span number increases. The moving force is regarded as a quasi-static load within the low
velocity range 0E aE 0·05. The higher span number results in a heavier mass of the entire
beam. As a result, in Figures 8(a) and 8(b) it is shown that the higher the number of the
span, the lower both Wmax and Mmax are within the velocity range. A force travelling on

Figure 7. Comparisons of three different a effects on the moment history of the mid-point of the last span
of a three-span Timoshenko beam (r=0·05): (a) a=0·047; (b) a= ac ; (c) a=0·173.
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Figure 8. The span number effect on (a) the Wmax–a distribution and (b) the Mmax–a distribution of a
multi-span Timoshenko beam (r=0·05). ——, Five spans; ----, three spans; ——, one span.

the beam induces a disturbance propagation in the beam. The composition of the
disturbance includes free waves and non-propagating parts, which attenuate spatially.
Consequently, the effect of free waves on the vibration of the beam is more apparent for
higher span numbers. The vibration of the beam is dominated by the first modal frequency
of the structure. The first mode shape of the beam is a bending mode. Both figures therefore
demonstrate that the higher the number of the span, the more both Wmax and Mmax are
constrained within the neighborhood of the critical velocity of a bending wave. In Table 1
it is shown that the critical velocity will approach the lowest bending wave phase velocity
in the beam as the span number increases. In Table 2 it is shown that the larger the span
number is, the greater is the value of the maximum deflection. Mead [10] has found that
an infinite regularly supported beam, which is subjected to a force travelling with a bending
wave phase velocity, will deform seriously. The results presented in Tables 1 and 2 agree
with Mead’s prediction.

T 1

The effect of span number on the critical velocity ratio 100ac of a multi-span
beam (r=0·05)

Span Bernoulli–Euler beam Timoshenko beam

1 9·896 9·111
2 13·823 12·566
3 14·137 13·195
4 14·294 13·509
5 14·294 13·666
6 14·294 13·823
* 15·708 14·988

* The lowest phase velocity ratio of bending wave in the beam.
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T 2

The effect of span number on the absolute maximum deflection (100Wmax )
of a multi-span beam (r=0·05)

Span Bernoulli–Euler beam Timoshenko beam

1 3·623 3·911
2 4·860 5·365
3 5·967 6·825
4 6·773 8·049
5 7·502 9·054
6 8·357 9·861

8. CONCLUSIONS

The value of the first modal frequency of a multi-span beam is independent of the span
number. The effects of rotatory inertia and of shear deformation on lowering the first
modal frequency are apparent for a beam with a high ratio of radius of gyration to span
length. Within the neighborhood of the critical velocity, the effects of rotatory inertia and
shear deformation cause greater absolute maximum deflection than the bending effect
alone. Both a large deflection and a large moment of a beam induced by a force moving
with a subcritical velocity occur while the force travels on the beam. Moreover, a force
moving with the critical velocity causes both the maximum deflection and the maximum
moment of a beam to appear while the force is leaving the beam. Higher span numbers
result in higher absolute maximum deflection, absolute maximum moment and critical
velocity. The upper bound of the critical velocity is the lowest phase velocity of the bending
wave in the beam.
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APPENDIX: LIST OF FUNCTIONS D1 (j), D2 (j), ETC.

(1) For v2 Q o/r4:

D1 (j)= cos (l1 j)− cosh (l2 j)− [cos (l1)− cosh (l2)] sinh (l2 j)/sinh (l2),

D2 (j)= sin (l1 j)− sin (l1) sinh (l2 j)/sinh (l2),

E1 (j)=0 v2

l1 or
− l1 1 sin (l1 j)−0 v2

l2 or
+ l2 1

×6sinh (l2 j)+
[cos (l1)− cosh (l2)] cosh (l2 j)

sinh (l2) 7,

E2 (j)=−0 v2

l1 or
− l1 1 cos (l1 j)−0 v2

l2 or
+ l2 1 sin (l1) cosh (l2 j)/sinh (l2),

F1 (j)=0v2

or
− l2

11 cos (l1 j)−0v2

or
+ l2

216cosh (l2 j)+
[cos (l1)− cosh (l2)] sinh (l2 j)

sinh (l2) 7,

F2 (j)=−0v2

or
− l2

11 sin (l1 j)−0v2

or
+ l2

21 sin (l1) sinh (l2 j)/sinh (l2), (A1)–(A6)

where

l2
1 =

v2r2(1+ o)
2o

+Xr4v4

4o2 (1− o)2 +v2,

l2
2 =−

v2r2(1+ o)
2o

+Xr4v4

4o2 (1− o)2 +v2.

(2) For v2 q o/r4:

D1 (j)= cos (l1 j)− cos (l2 j)− [cos (l1)− cos (l2)] sin (l2 j)/sin (l2),

D2 (j)= sin (l1 j)− sin (l1) sin (l2 j)/ sin (j2),

E1 (j)=0 v2

l1 or
− l1 1 sin (l1 j)+0 v2

l2 or
− l2 1

×6−sin (l2 j)+
[cos (l1)− cos (l2)] cos (l2 j)

sin (l2) 7,



.-. 742

E2 (j)=−0 v2

l1 or
− l1 1 cos (l1 j)+0 v2

l2 or
− l2 1 sin (l1) cos (l2 j)/sin (l2),

F1 (j)=0v2

or
− l2

11 cos (l1 j)+0v2

or
− l2

216−cos (l2 j)−
[cos (l1)− cos (l2)] sin (l2 j)

sin (l2) 7,

F2 (j)=0v2

or
− l2

11 sin (l1 j)−0v2

or
− l2

21 sin (l1) sin (l2 j)/sin (l2), (A7)–(A12)

where

l2
1 =

v2r2(1+ o)
2o

+Xr4v4

4o2 (1− o)2 +v2,

l2
2 =

v2r2(1+ o)
2o

−Xr4v4

4o2 (1− o)2 +v2.


